Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 118(1-2): 27-40, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28396077

RESUMO

The marine environment is a complex system formed by interactions between ecological structure and functioning, physico-chemical processes and socio-economic systems. An increase in competing marine uses and users requires a holistic approach to marine management which considers the environmental, economic and societal impacts of all activities. If managed sustainably, the marine environment will deliver a range of ecosystem services which lead to benefits for society. In order to understand the complexity of the system, the DPSIR (Driver-Pressure-State-Impact-Response) approach has long been a valuable problem-structuring framework used to assess the causes, consequences and responses to change in a holistic way. Despite DPSIR being used for a long time, there is still confusion over the definition of its terms and so to be appropriate for current marine management, we contend that this confusion needs to be addressed. Our viewpoint advocates that DPSIR should be extended to DAPSI(W)R(M) (pronounced dap-see-worm) in which Drivers of basic human needs require Activities which lead to Pressures. The Pressures are the mechanisms of State change on the natural system which then leads to Impacts (on human Welfare). Those then require Responses (as Measures). Furthermore, because of the complexity of any managed sea area in terms of multiple Activities, there is the need for a linked-DAPSI(W)R(M) framework, and then the connectivity between marine ecosystems and ecosystems in the catchment and further at sea, requires an interlinked, nested-DAPSI(W)R(M) framework to reflect the continuum between adjacent ecosystems. Finally, the unifying framework for integrated marine management is completed by encompassing ecosystem structure and functioning, ecosystem services and societal benefits. Hence, DAPSI(W)R(M) links the socio-ecological system of the effects of changes to the natural system on the human uses and benefits of the marine system. However, to deliver these sustainably in the light of human activities requires a Risk Assessment and Risk Management framework; the ISO-compliant Bow-Tie method is used here as an example. Finally, to secure ecosystem health and economic benefits such as Blue Growth, successful, adaptive and sustainable marine management Responses (as Measures) are delivered using the 10-tenets, a set of facets covering all management disciplines and approaches.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecologia , Ecossistema , Atividades Humanas , Humanos , Oceanos e Mares , Medição de Risco , Gestão de Riscos
2.
Mar Pollut Bull ; 58(2): 179-88, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19131078

RESUMO

Large-scale losses of seagrass beds have been reported for decades and lead to numerous restoration programs. From worldwide scientific literature and 20 years of seagrass restoration research in the Wadden Sea, we review and evaluate the traditional guidelines and propose new guidelines for seagrass restoration. Habitat and donor selection are crucial: large differences in survival were found among habitats and among donor populations. The need to preferably transplant in historically confirmed seagrass habitats, and to collect donor material from comparable habitats, were underlined by our results. The importance of sufficient genetic variation of donor material and prevention of genetic isolation by distance was reviewed. The spreading of risks among transplantation sites, which differed in habitat characteristics (or among replicate sites), was positively evaluated. The importance of ecosystem engineering was shown in two ways: seagrass self-facilitation and facilitation by shellfish reefs. Seagrass self-facilitative properties may require a large transplantation scale or additional measures.


Assuntos
Ecossistema , Engenharia , Recuperação e Remediação Ambiental/normas , Poaceae/fisiologia , Conservação dos Recursos Naturais/métodos , Recuperação e Remediação Ambiental/métodos , Oceanos e Mares , Risco
3.
Mar Pollut Bull ; 53(1-4): 5-19, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16426645

RESUMO

The main goal of the EU Water Framework Directive (WFD) is to achieve good ecological status across European surface waters by 2015 and as such, it offers the opportunity and thus the challenge to improve the protection of our coastal systems. It is the main example for Europe's increasing desire to conserve aquatic ecosystems. Ironically, since c. 1975 the increasing adoption of EU directives has been accompanied by a decreasing interest of, for example, the Dutch government to assess the quality of its coastal and marine ecosystems. The surveillance and monitoring started in NL in 1971 has declined since the 1980s resulting in a 35% reduction of sampling stations. Given this and interruptions the remaining data series is considered to be insufficient for purposes other than trend analysis and compliance. The Dutch marine managers have apparently chosen a minimal (cost-effective) approach despite the WFD implicitly requiring the incorporation of the system's 'ecological complexity' in indices used to evaluate the ecological status of highly variable systems such as transitional and coastal waters. These indices should include both the community structure and system functioning and to make this really cost-effective a new monitoring strategy is required with a tailor-made programme. Since the adoption of the WFD in 2000 and the launching of the European Marine Strategy in 2002 (and the recently proposed Marine Framework Directive) we suggest reviewing national monitoring programmes in order to integrate water quality monitoring and biological monitoring and change from 'station oriented monitoring' to 'basin or system oriented monitoring' in combination with specific 'cause-effect' studies for highly dynamic coastal systems. Progress will be made if the collected information is integrated and aggregated in valuable tools such as structure- and functioning-oriented computer simulation models and Decision Support Systems. The development of ecological indices integrating community structure and system functioning, such as in Ecological Network Analysis, are proposed to meet a cost-effective approach at the national level and full assessment of the ecosystem status at the EU level. The WFD offers the opportunity to re-consider and re-invest in environmental research and monitoring. Using examples from the Netherlands and, to a lesser extent, the United Kingdom, the present paper therefore reviews marine monitoring and marine environmental research in combination and in the light of such major policy initiatives such as the WFD.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Monitoramento Ambiental/métodos , Poluentes da Água/análise , Poluição da Água/prevenção & controle , Animais , Biodiversidade , Biomassa , Custos e Análise de Custo , Monitoramento Ambiental/economia , Poluentes Ambientais/análise , União Europeia , Sedimentos Geológicos/análise , Biologia Marinha/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...